Q - Master en Banca y

Finanzas Cuantitativas

eman la zabal zazu

universidad euskal herriko
del pais vasco unibertsitatea

Finite-difference Numerical
Methods of Partial Differential

Equations in Finance with Matlab.

Professor: Aitor Bergara
UPV/EHU

http://www.ehu.es/aitor
Email: a.bergaralehu.es

Program

Program

Objectives.
Bibliography.
1. Ordinary Differential Equations (ODE).
11 Analytic resolution: second order ODE with constant coefficients (example: the

harmonic oscillator).
1.2 Some basics:
1.2.a Geomeftric interpretation of a derivative.
1.2.b Taylor series.
13 Numerical resolution of ODEs:
1.3.a Forward Euler (explicit) method (Matlab Program 1).
1.3.b Backward Euler (implicit) method.
1.3.c Midpoint method (Matlab Program 2).
1.3.d Second-order Runge-Kutta method (or trapezoidal).
1.3.e Fourth-order Runge-Kutta method.
1.4 Order Reduction and a system of ODEs.
15 Errors and Stability.

2. Introduction to Partial Differential Equations (PDEs): Finite-difference Methods I.
2.1 Definition of a partial derivative. The gradient operator.
2.1 Classification of second order linear PDEs depending on two variables.
2.2 Analysis of differences in the solution of PDEs.
2.3 Boundary and initial conditions.
2.4 Finite-difference representations of advection (hyperbolic) PDE:
2.4.a Explicit forward time centred space method (FTCS) (Matlab Program 3).
24.a.l Stability analysis: Von Neumann method.
2.4b Lax method (Matlab Program 4).
24b.1 Stability Analysis: Courant-Friedrichs-Lewy condition.
24.c Staggered leapfrog method.

3. Finite-difference Methods IT: The Heat (or Diffusion) Parabolic PDE.
3.1 Explicit forward time centred space method (FTCS) (Matlab Program 5).
3.1.a Stability analysis.
3.2 Implicit methods:
3.2.a Fully implicit method (Matlab Program 6).
3.2al Stability analysis.
3.2b Crank-Nicholson method. (Matlab Program 7).
3.2b1 Stability analysis.
3.2b.2 LU decomposition (Matlab Program 8).
3.2b.3 SOR (Successive Over-relaxation) Method:
e Jacobi method.
e Gauss-Seidel method.
e Optimal SOR method.

Program

4. The Black-Scholes Equation.

4.1
4.2
43
44
45
4.6
47
4.8
49

Derivation of Black-Scholes equation.

Analysis of advection and diffusion in the Black-Scholes equation.
Basic assumptions of Black-Scholes equation.

Boundary and initial/final conditions of Black-Scholes PDE.
Different payoffs at expiry. European and American Options.
Transformation to constant coefficient diffusion equation.
Derivation of Black-Scholes Formulae.

Analysis of the Greeks.

Extensions of Black-Scholes Equation.

5. Finite-difference Representations for the Black-Scholes Equation.

5.1

52

Explicit methods:
5.1.a Derivation of explicit FTCS finite-difference representation.
5.1b Implementation of different boundary conditions.
5.1.c Local and global errors.
5.1.d Analysis of von Neumann stability (Matlab Program 9).
Implicit Methods:
5.2.a Fully implicit finite-difference representation.
5.2.b Crank-Nicholson method.
5.2.b.1 Implementation of boundary conditions.
5.2.b.2 Matrix Inversion.
5.2.b.3 LU decomposition.
5.2.b.4 SOR Method.

6. Other Finite-difference Methods for the Black-Scholes Equation.

6.1
6.2
6.3
6.4
6.5

Philosophy behind any new method.

Douglas scheme.

Three time level methods: Du-Fort Frankel.

Richardson extrapolation.

Free boundary problems: American options.

6.5.a Early exercise and the explicit method (Matlab Program 10).
6.5.b Early exercise and the implicit methods.

Objetives

Objectives

The basics of this course stand on the Black-Scholes equation,
which values the price of an option by using PDEs. The study of
PDEs in complete generality is a vast undertaking. As almost all
of them are not possible to solve analytically (however, one very
useful exception are European Call/Put options) we must rely on
numerical methods, and the most popular ones are the Finite-
difference Methods.

With this course we do not infend to become experts in 15 hours
in order to solve PDEs numerically, but develop both intuition
and technical strength required to survive when such a problem
needs to be solved.

Bibliography

Bibliography

P. Wilmott, S. Howison, and J. Dewinne, The Mathematics of
Financial Derivatives, Cambridge University Press, 1996.

D. Tavella and C. Randall, Pricing Financial Instruments, John

Wiley Sons Tne. 5000 1. Ordinary Differential Equations
6.D. Smith, Numerical Solution of Partial Differential

(ODEs)
Eguations: Finite Diffe Methods, Cl don P , Oxford, .
lgqé/g 10N. nmire Dirrerence merho arenaon rress Xtor The f|r-s-|- Sfep befor-e PDES

J.C. Strikwerda, Finite Difference Schemes and Partial
Differential Equations, Chapman & Hall, New York, 1990.

I. Peral, Ecuaciones en Derivadas Parciales, Addison Wesley,
1995.

J. C. Hull, Options, Futures & Other Derivatives, Prentice Hall,
2000.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

Analytical Solution of First Order ODEs

General First-order ODE:

‘i,—y = F(ty) s () =,
t

Variable-separation method

This method just can be applied to solve the simplest cases.
When the tfwo variables contribute separately, so that,
f(t,y)=G(t)H(y), the ODE above can be rewritten as:

dy _ dt
H(y) G(1)

, y(t,) =y,

After integrating both sides, the solution is:

fd_y_ ¢ dr
WH(Y) LG

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

Basic Technical Points

1. Geometric interpretation of a derivate

Yo+ Ay = y(x, + Ax)

Vo = y(xy) i Ay

v

X, X,+ Ax

@ :llmy(‘x0+Ax)_y('x0)
dx| Ax—0 Ax

X=X(

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations 1. Ordinary Differential Equations

2. Taylor expansion:

S \\ 7 x*
Fourth order 142 34 =
N1d" 4
f(X) :f(xo)-l-Z— ‘nf (x_xo)” +O(x_x0)N+l
n=1 n! dx x=0 3
2
1
Application: 0 X
pplication: \/
1L | |]
’ -2 -1 0 1 2
3 f(x)=e™ =2e"
4
3
2
_0 N __— o, 3 17X x 31Xt ¥ 12758
1 4 1+x-x+ - + - +
c ’ 1 ’ 12 4 360 40 20160
3 i .
Fifth order
' ! I \
2 3 2t
3\ Second order -1+ x? 05\ Third order ~1tX-X
2 0 X 1
-05
1 B 0 .
0 X) 1 k/-

-1 -2 -1 0 1 2

-2 -1 0 1 2

Finite-difference Numerical Methods Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

Numerical Solution of First Order ODEs

1. Forward Euler Method

Forward Euler (FE) method is the simplest and most obvious
numerical ODE integrator. It uses the slope at each point,
computed using the ODE, to extrapolate and find the next point:

yv(t+ At) = y(t)+ %At =y()+ f(t,y)At
So.
yi+l:yi+f(ti7yi)At+O(At2) ti=t0+iAt

(Explicit method)

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

Matlab program 1: Integrate the first order ODE system
x'(t) = 2x(t)+1

with x(0) =1 using forward Euler.

clear;

% Coefficients of the equation: a x'=sb x + c t
=1.;
==2.;

.7

Q0O w
—

% Initial and final times
tinit= 0.;
tmax=5.;

% Number of time steps
maxt = 3000;

dt = (tmax-tinit) /maxt;
% Initial condition
x(1)=1.;

t(l)=tinit;

% Time loop

for j=1:maxt;
x (3+1) =x (3) +dt* ((b*x (§) +c* (§) *dt) /a) ;
t(j+1)=tinit+j*dt;
end;

% Figure

plot (t, x) » IEuIer h:mhod .
title ('Euler Method')

xlabel ('T") 22r

ylabel ("X (t)") oL

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

2. Backward Euler Method

In the Backward Euler (BE) the right-hand side is evaluated at a
new location:

yi+1 = yi + f(ti+19yi+1)At+ O(Atz)

(Implicit method)

3. Midpoint Method

Symmetric method to evaluate the derivative, using a Taylor
expansion that involves only odd powers of Af,

More accurate |

Vin =y 2/)Ar+(0(Ar)

N
but requires special initialisation to generate additional values
that are needed from the past:

Y= Ye— At f(ty,¥,)

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

% Matlab Program 2: Solving the a x'=b x + ¢ t ODE by using the
midpoint method
clear;

% Coefficients of equation a x'=b x + c t
=1.;
==2.;
=1.;

QO w

% Initial and Final Times
tinit= 0.;
tmax=>5.;

% Number of Time Steps
maxt = 3000;
dt = (tmax-tinit) /maxt;

% Initial Condition

Time Loop
for j=2: (maxt+1l);
X (J+1)=x(j=1)+2.*dt* ((b*x () +c* (J) *dt) /a) ;
t(Jj+1)=tinit+(j-1) *dt;
end;

plot (t, x)
title('Midpoint Method')
xlabel ('T")
ylabel ("X (t)")

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

or Second-order Runge-Kutta (or Trapezoidal)

We can write the midpoint method as:

At At
YVier = Vi t f(ti+ Tay(ti'i' 7))At

and the initialisation problem is eliminated in the second-order
Runge-Kutta method, by wusing extrapolation for the
intermediate step:

= At f(,)

k
At k

k, = At t+ —,y. + L

2 f(l 2 yz 2)

YViein = Y + k, + O(Af3)

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

4. Fourth-order Runge-Kutta

kl = At f(ti’yi)

At k
k, = At t+—,y + L
2 f(z 2 yl 2)

At k
k,=At f(t, + —,y, + =
3 f(, > Vi 2)

ky,=At f(t,+At,y, +ky)

Vi =y, + é—(k1 + 2k, + 2k, +k,)X O(AL’

There are many other methods, i.e. step variable methods.

Source of Errors (will be extended in next chapter)

e Round-off error comes from finite precision arithmetic.
e Truncation error comes from the method.
e Stability.

Numerical dynamics are a pernicious problem: the effects of the
integration method, the time step, the computer arithmetic, etc,
.., can mess with the system's behaviour /n ways that look
exactly like real effects. You should always distrust your results
and do some basic belief checks on them: change time step, use
a different method, use double-precision arithmetic instead of
single, etc..., and see if your results change. If they don't, it is
safe(r) to trust on them.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

Analytical Solution of Nth-Order LODEs

For example, a general 2nd-order LODE is:

px)yY +q(x)y +s(x)y =h(x) , W(t,) =y, andy'(t,) =y,

Nth-Order LODE with constant coefficients

This method just can be applied to solve LODEs with constant
coefficients, which for the 2"-order LODE becomes:
py +qy +sy=h. Consider that r, and r, are the roots of the

characteristic equation of the 2"-order LODE pr’ +gr+s=0.
The following cases can be considered:

o n#Er L y({t)=ce" +ce™ +hls.
o n=r=r (€R): yt)=(ct+c,)e" +h/s.

¢, and ¢, are constants that can be obtained in terms of the two
initial conditions.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

1. Ordinary Differential Equations

Numerical Solution of Nth-Order LODEs

N-order ordinary differential equations can be substituted by a
system of coupled first-order differential equations. For
example, any 2"-order ODE: p(x)y”+q(x)y +r(x)y = h(x) with
the following initial conditions: y(x,)=y,,» (x,)=y, can be
V=Y,
replaced by the system: , h(x) ¢(x) r(x) when the new
2 = - Yo~ I
r(x) px)" " pkx)
functions are defined: y,(x) = y(x) and y,(x) = y’(x)

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):

Finite-difference Methods I

2. Introduction to Partial
Differential Equations (PDEs):
Finite-difference Methods I

Transformation from a differential equation to a
difference equation

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

| Il o

Heat (or Diffusion) Equation

0T (x,t) D 0°T (x,t) _

0
ot (S dx’

Thermal conductivity
and (or diffusion coefficient)

Boundary conditions: T (0,¢) =100 °and T (L,t) = 0°

Tnitial condition: T'(x,0) = 100 cos 2’”2

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):

Finite-difference Methods I

Fortunately, almost all PDEs encountered in Finance are linear

and 2"-order. A linear 2"-order PDE satisfied by a function
u(x,t) depending on just two variables (space and fime):

0%u 0°u 0°u du Jdu
A 2B—+C =D(x,t,u,—,—
ot T 2B e T C g TRt o

Classified into three categories:

e B’—AC>0 — Hiperbolic:

Linear in a—u and ou

X ot

Wave Equation
c’ dt’

e B>~ AC=0 — Parabolic

a_uzDazu
ot dx’

Diffusion Equation

(Black-Scholes)

e B*—AC<0 —> Ellipﬁc (as not related to finance, will not be analyzed)

Laplace Equation

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Being u(x,0) =

2 (initial pulse) with free boundaries, the
NN (pulse)

solution for each type of equation differs drastically:

e Wave (or Advection) Equation: u(x,t)=

_(xi002
e 2
N2
u
1
0.75 10
0.5
0.25 8
0 6
) f
-2
0 2 T
2
X 4 0
) 1 _i 1 7(x—z)2
Diffusion Equation: u(x,?)= | dz e ? e M
_L N2 N4rDt

% 5%,
%% %
BT
SIS
00,0,5%
KB
o200,
2000
S5
00,
0orlsdotr
o200/ %
e 30l
QLN
00 0%
0:%%,
5%
PR
:z""
7;

,

L

R
%

2
%
%
00

0
%
o5
2
l

</
%0,
2975500
Q%
0
20,
L&
20,

%

LY
2

%
9%

K
%%
%
:'l
ooy
1220024
20,005
252
2
{
1o
&

2%
J;
2% o

"l

%
20

9%

%

2

%
20,
2%
&

o205
K
0%

a5
0o,
L0
l',;' %
3%

G
N

Loy
<
052,
o
55
0}
L%
5t
e 0
SRR,
%
00,0

L
o

5
25
25
Wele;
RBRL
0%
i
Yo%
:,"'"

s %
TS SIS

R,

%

0%

L

L)

N

5
4
&

7

v
%%
4’
a0
o)
{7

Y

oo
R
RLLZL
LA
oy, '.h

o

27

Ly

%
T
vy
g

o
%

2y

&

Iy
{

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Boundary/initial conditions

Depending on the problem, initial conditions (IC)
u(x,t =0)=u,(x)
and/or boundary conditions (BC):

au +ba—u:c,Vxe 0Q , V¢t
d0x

and are called Dirichlet (b=0), Newmann (a=0), or Robin (c=0).

In general terms, the following questions should be asked when
considering a PDE:

e Does the equation make sense mathematically? What must
we say about the solution on the boundary (boundary
conditions) in order to obtain a well-posed problem?

e Can we develop analytical tools to solve the problem?
e How should we solve the equation numerically? What

implications do the mathematical properties of the solution
have for the numerical method we choose?

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Similarity Method for the diffusion equation

Often happens that the solution of a PDE, together with its
initial and boundary conditions, depends only on one special
combination of the two independent variables. In such cases, the
problem can be reduced to an ODE in which this combination is
the independent variable. The solution to this ODE is called a
similarity solution to the PDE.

The key to the Similarity Solutions in the diffusion equation is
that both the equations and the initial and boundary conditions
are invariant under the scalings x = Ax,7 — A7 for any real
number. Such a scaling is called one-parameter group of
transformations. Therefore, x//7 is the only combination
independent of A in the transformation. In general, a good
practical test to find similarity solutions in any equation is to try
solutions of the form u = 7% f(x/7”).

Example 1: Suppose that u(x,7) satisfies the following diffusive
problem on the semi-infinite intervalx > 0:

du d’u
87—8.)(72,x,7>0,

With the initial condition: u(x,0) =0, and a boundary condition
at x=0, u(x,7) =1; we also require that u(x — o,7) — 0.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

As it is explained above, we can look for a solution which
depends only on x and 7 through the combinationé = x/~/z, so
that, u(x,7) = U(¢) satisfies the following second-order ODE:

d’U 1 ,dU _

+—-¢—=0.
dé* 27 d&

From the initial and boundary conditions, U(0) =1, U(e) = 0.
Separating variables we find that:
% —§2/4
U)=Cle**ds+D,
0

where C and D are constants. After applying the boundary
conditions, we find that:

15 —52/4
UE)=—=|e ds -
(3 le :
that is:
u(x,7)= L J-e_sz/“ds_

ﬁ

T iz

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Example 2: We derive here the fundamental solution (as it can
be considered the basis of a general solution with any initial
condition) of the diffusion equation:

du _0’u
g—a‘xiz,x,f>o,

with the initial condition: u(x,0)=0(x) (the Dirac delta
function) and u(x — Fo0,7) — 0.

We again look for solutions which depends only on x and 7
through the combinationé = x/</z, but we know try the form,
us(x,7)=7"?U4(E) , which satisfies the following second-order
ODE:

d’Uy 14U, _

dé* 2 dé

The 77/ term is there to ensure Iu(x,r)dx is constant for all

—oo

7 . The general solution of this is:

Us(&)=Ce* " +D,

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

where C and D are constants. Choosing D=0 and normalising the
solution by setting C:I/(2«/;), so that J.ua(x,z')dle, yields
the fundamental solution:

2
ué‘(x, T) — -Xx /4T

1
e
AN 41
This fundamental solution of the diffusion equation can be used
to derive an explicit solution to the diffusion equation for

—o<x<o and 7>0 with arbitrary initial conditions
u(x,0)=u,(x).

The key to the solution is the fact that we can write the initial
data as

u, (1) = [u,(EX(x—EVdE.

As the function

L@ e—(s—x)2/42'

MO(S)M(;(S—X,T) = 2\/%

satisfies the diffusion equation with initial data u,(s)d(s—x)

and the diffusion equation is linear, the general solution is found
by superposing solutions of this form:

U (x’ T) —)e—(x—s)2/41'ds.

o
> Tar 400

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

A grid (mesh) is defined in (x,t) space so that each point is
characterized by:

X, =x,+nAx,n=0]1,., N

n

t, =ty + jAtt =01, N

X

t

u,,; = u(xn,tj)

n,j

AtI - g

Ax " X

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Example: Flux-conservative problem
(Advection Equation)

ou du
C—=—
ox ot
The conservation of “particles” inside a
volume is applied: the change on the
number of flowing “particles” inside a
finite volume is equal to the flux of the
current associated to these moving
particles.
By using:
al/l un i+1 _un i au un+l j _un—l j 2
— =" 4 O(AY) and — =" " O(AxY)
ot At ox 2Ax
Second-order representation but still using
Forward Euler only quantities known at time step j.

—+

FTCS
(Forward Time Centered Space)

X

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

un,j+1 o Z’ln,j — ¢ un+1,j - un—l,j
At 2Ax
or
_ cAt ()
un,j+l - un,j - 2Ax un+1,j _un—l,j

The FTCS representation is an explicit scheme: u, .., for each n

n,j+1
can be calculated explicitly from the quantities that are already
known. Latter we shall meet implicit schemes, which require us
to solve implicit equations coupling the u, .., for various n. The

n,j+l
FTCS algorithm is also an example of single-/eve/ scheme, since
only values at time level j have fo be stored to find values at
time level j+1.

It is a fine example of an algorithm, that is easy to derive, takes
little storage, and executes quickly.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):

Finite-difference Methods I

o

Matlab Program 3: Square-wave Test for the Explicit Method to solve
the Advection Equation
clear;

o°

o

Parameters to define the advection equation and the range in space and

% time

Imax = 1.0; % Maximum length
Tmax = 1.; % Maximum time

c =1.0; % Advection velocity

o

% Parameters needed to solve the equation within the explicit method

maxt = 3000; % Number of time steps

dt = Tmax/maxt;

n = 30; % Number of space steps

nint=15; % The wave-front: intermediate point from which u=0
dx = Lmax/n;

b = c*dt/ (2.*dx);

o

% Initial value of the function u (amplitude of the wave)
for i = 1:(n+1)
if 1 < nint

u(i,1)=1.;

else

u(i,1)=0.;
end
x (1) =(1-1)*dx;

end

o

% Value of the amplitude at the boundary
for k=l:maxt+1l
u(l, k) = 1.
u(n+l, k) =
time (k) = (
end

o

% Implementation of the explicit method

for k=1:maxt % Time loop
for i=2:n % Space loop

u(i,k+1) =u(i,k)-b*(u(i+l,k)-u(i-1,k));
end
d

o

% Graphical representation of the wave at different selected times
plot (x,u(:,1),"'-",%x,u(:,10),"'-",x,u(:,50),"'=-",x,u(:,100),"'-")
title ('Square-wave test within the Explicit Method I'")

xlabel ("X")

ylabel ('Amplitude (X) ")

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods T

Too bad, it does not work 112?

Square-wave Test within the Explicit Method |
1.4 T T T T T T T T T

=2
[=x]

Arnplitude:)
o
m

0.4

0.z

06 07 08 09 1

Just play with different values of b (see in the program script
above) to realize how unstable it may become !

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Sources of Errors and Stability

In this example, we see that there are two fundamental sources
of error: fruncation error in the space and discretizations. The
implication of truncation error is that the numerical scheme
solves a problem that is not exactly the same as the problem we
are frying fo solve. The approximate solution of our PDE
obtained with the numerical scheme can be viewed as the exact
solution of a different problem. To characterize what numerical
scheme does, we need to address three fundamental issues:

1. Consistency: A numerical scheme is said to be consistent if
the finite difference representation converges to the PDE
we are trying to solve as the space and time steps tend to
zero. When spatial and fime discretizations are kept
separated (as it is the general case) consistency does not
appear to be relevant, but has to be checked when both
discretizations are mixed.

2. Stability: A numerical scheme is said to be stable if the
difference between the numerical solution and the exact
solution remains bounded as the number of steps ftends to
infinity.

3. Convergence: a scheme s said to converge if the difference
between the numerical solution at a fixed point in the
domain of interest tends to zero uniformly as the space and
time discretizations tend to zero (not necessarily
independently from each other).

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

The Lax Equivalence Theorem links these issues together: &Given
a properly posed linear initial value problem and a consistent
finite difference scheme, stability is the only requirement for
convergence. This theorem illustrates why we will dedicate much
effort to analyzing and understanding stability.

The vague issue of accuracy of a scheme is not very relevant in
its own right. A consistent scheme can be made increasingly
accurate by decreasing the time and spatial steps. What
matters is the cost (coding effort, memory requirements and
computational requirements) of the accuracy.

Stability Analysis: Fourier Approach (von Neumann)

The stability problem arises because we are using finite
precision computer arithmetic to solve the difference equations,
which infroduces rounding errors into the numerical solution.
The system is said to be stable if these rounding errors are not
magnified at each iteration. Ask the question, "if a small error is
infroduced into the solution, is it magnified by the numerical
method or does it decay away?".

The Fourier method is based on decomposing the numerical
solution into Fourier harmonics on the spatial grid. Although this
method does not capture the influence of boundary conditions,
it is quite easy to formulate and usually accurate enough to
provide practical stability criteria.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

We can decompose the solution into Fourier modes on the mesh:
_ ik, (nAsx)
un,j _Zum(tj)el ! '
m

where u,,(¢;) is the amplitude and k,, is the wavenumber of the
mode m. A further simplification is that for linear equations, he
Fourier modes are uncoupled, so that we might consider them
individually. Writing the time dependence of the amplitude’ in
terms of the amplification factor, &(k), u, , =&’ (k)e™™. If we

find that |£(k)|>1 then it is unstable.

After substituting this in the equation we have that
E(k) =1—ichAtsinkAx, so that |&(k)|>1, therefore, the solution

explodes (oscillatory) and becomes unstable!! for any Azand Ax.

'PDEs to be considered have the form:

Ju
L
a

where L is a partial differential operator containing no time
derivatives. The application of spatial discretization to Lu will
result in the following system of equations:

where A matrix that after being diagonalized, X'AX =2,
where A is the diagonal matrix with the eigenvalues &, .
Introducing the definition v=X"u, the solution verifies:
v, =c,e™, and after time discretization v, =c,e™"*" which
goes with the power of the fime step, /.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

To cure the instability: Lax Method

Simply replaces the term u, . in the time derivative by its
average:

|
Z/ln,j _)5 (un+1,j +un—l,j)

The advection equation turns into:

1 A
un,j+1 = 5 (un+l,j + un—l,j)_ ;Ai (un+1,j - un—l,j)

Which is also explicit, and after applying the von Neumann
stability analysis we get:

cAt
k) = cos kAx —i —sin kAx
$(k) -

and the stability condition | (k) |<1 leads to the requirement:

|c| At <1 Courant-Friedrichs-Lewy
Ax condition
The method has to go faster This is art /

than the wave !l

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):

Finite-difference Methods I

% Matlab Program 4: Step-wave Test for the Lax method to solve the Advection

% Equation

clear;

% Parameters to define the advection equation and the range in space and time
Lmax = 1.0; % Maximum length

Tmax = 1.; $ Maximum time

c =1.0; % Advection velocity

o

% Parameters needed to solve the equation within the Lax method

maxt = 350; % Number of time steps

dt = Tmax/maxt;

n = 300; % Number of space steps

nint=50; % The wave-front: intermediate point from which u=0
(nint<n) !'!

dx = Lmax/n;

b = c*dt/(2.*dx);

% The Lax method is stable for abs(b)=< 1/2 but it gets difussed unless abs (b)=
$ 1/2

% Initial value of the function u (amplitude of the wave)

for i = 1:(n+1)

if i < nint
u(i,1)=1.;

else
u(i,1)=0.;
end
x (1) =(1i-1)*dx;
end

o

% Value of the amplitude at the boundary at any time
for k=l:maxt+l

u(l, k) = 1.;
u(n+l,k) = 0.;
time (k) = (k-1)*dt;
end
% Implementation of the Lax method
for k=1:maxt % Time loop
for i=2:n % Space loop

u(i,k+1l) =0.5*(u(i+l,k)+u(i-1,k))-b*(u(i+l,k)-u(i-1,k));
end

d

o

% Graphical representations of the evolution of the wave
figure (1)

mesh (x,time,u'")

title('Square-wave test within the Lax Method')

xlabel ('X")

ylabel ('T")

figure (2)

plot (x,u(:,1),"'-'",x,u(:,20),"'-",x%x,u(:,50),"'-",x,u(:,100),"'-")
title('Square-wave test within the Lax Method')

xlabel ("X")

ylabel ('Amplitude (X) ')

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Square-wave test within the Lax Method

Square-wave test within the Lax Method

Amplitudef?)
o
&

1} 01 02 03 04 05 0B 07 08 ik}

Sruare-wave test within the Lax Method I Srjuare-wave test within the Lax Method

i

Square-wave test within the Lax Method I Square-wave test within the Lax Method

Amplitude()
s o o
£ 5 &

o
X}

o

o
o
=)
a
o
[
o
=
o
@
o
@
o
=
o
@
o
@

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Cases:
A
. lelar >1— The method gets unstable
. |c| At

<1 — The method gets diffusive (it gets worse to

get smaller time steps)

. |c| At
Ax

=1— The method converges to the exact result

Proof that the Lax scheme of the advection equation is exactly
the FTCS representation of the equation:

du du (Ax)> o’u
—=C— 4+
ot ox 2At ox?

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

2. Introduction to Partial Differential Equations (PDEs):
Finite-difference Methods I

Second-order Accuracy in Time:
Staggered Leapfrog

The previous scheme is expensive (and dangerous)
computationally. However, there are schemes that are second-
order accurate in both space and time, and these can often be
pushed right to their stability limit. With correspondingly
smaller computation fimes:

u u u U, ; Staggered Leapfrog

n+l,j -

At - Ax Model

nj+ o Pnj-1

The von Neumann stability analysis now gives a quadratic
equation for &(k) rather than a linear one:

At
2 _1=2iE sinkAx
3 fo

whose solution is:

_CAL . CcAt . ?
§=ZESlnkAXi_ 1-— ESIHkAX

Thus the Courant condition is again required for stability, in
fact, | £(k) |=1 (no diffusion) for any cAz < Ax.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

3. Finite-difference Methods IT
The Heat (or Diffusion) Parabolic PDE

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

The Diffusive problem
(Heat or diffusion Equation)

ou _d(du
ot ox\ ox

The conservation of heat-energy inside a
volume is applied: the change in the energy
(so that, in the temperature) inside a
volume equals the flux of heat, which
within the Fourier Law is proportional to
the gradient of the temperature
(conductivity, D).

If D is constant:

Ju 0°u

e =D—2
ot ox
By using:
al: M+ O(At) and 82u _ U, — 2un,_/' + U, 1 + O(Ax)
ot At ox’ (Ax)?

T

Central difference representation but still
Forward Euler. using only quantities known at timestep j.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

Or

with o =

3. Finite-difference Methods IT: the Heat Equation

u —2u, +u,

n,Jj — Dun+1,]

At (Ax)?

un,j+1 -

U, =0, +(1-2a0u, +ou,
DAt
(Av)*
0
t
. . .

X FTCS
(Forward Time Centred Space)

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

% Matlab Program 5: Heat Diffusion in one dimensional wire within the
Explicit Method
clear;

oo

o\

Parameters to define the heat equation and the range in space and time
=1.; % Length of the wire
=1.; % Final time

H =

o

% Parameters needed to solve the equation within the explicit method

maxk = 2500; % Number of time steps
dt = T/maxk;
n = 50; % Number of space steps

dx = L/n;
cond = 1/4;
b = 2.*cond*dt/ (dx*dx) ;

o°

Conductivity
Stability parameter (b=<1)

o

o

% Initial temperature of the wire: a sinus.
for i = 1:n+l

x (1) =(1-1)*dx;

u(i,1l) =sin(pi*x(i));
end

% Temperature at the boundary (T=0)
for k=1l:maxk+l
u(l, k) = 0.
u(n+l,k) =
time (k) = (
end

o

% Implementation of the explicit method

oe

for k=1:maxk Time Loop
for i=2:n; Space Loop
u(i,k+1) =u(i,k) + 0.5*b*(u(i-1,k)+u(i+l,k)-2.*u(i,k));

o°

end

% Graphical representation of the temperature at different selected times
figure (1)

plot(x,u(:,1),'-",x,u(:,100),"'-",x,u(:,300),"'-",x,u(:,600),"'-")
title('Temperature within the explicit method')

xlabel ("X")
ylabel ('T")
figure (2)

mesh (x, time, u’

title('Temperature within the explicit method')
xlabel ('X")

ylabel ('Temperature')

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

Temperature within the explicit method 1 Temperature within the explicit method

2DAt _

05

1)
0 01 02 03 04 05 06 07 0& 08 1
X

1

i

pTIIe

Temperature

Temperature within the explicit methad I i Te wiithin the explicit method

00) 01 02 03 04 05 06 07 0& 08 1
E4

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

Stability Analysis: Von Neumann

This is a FTCS scheme again, but having a second derivative
makes a world of difference ! The FTCS was unstable for the
advection equation (hyperbolic), but trying independent solutions
of the form u,, =&’ (k)e™, we have that
£y =1- ?fo)f sinz(kgx
leads to the stability criterion:

j, so that the requirement |&(k)|<1,

The maximum allowed

2 DAt time step is the
A 2 <1 diffusion time across a
X cell of width Ax.

However, this condition implies huge limitations on the
calculation procedure. For example, if we want fo analyse with
great detail in space (Ax<<1) implies that Ar<<1 so that a
huge number of steps will be required until something
interesting happens. The computational requirement may be
enormous and, therefore, new methods are required.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

Implicit Methods

A. Fully implicit scheme (or backward in time)

2u +u

u,,; :D”n+1,j+1 —elU, i UL

un,j+1 -

At Ax?

This is like the FTCS scheme except that the spatial derivatives
on the right-hand side are evaluated at time step j+1.

Fully Implicit

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

One has to solve a set of simultaneous linear equations at each
time step for the u, ,,. Fortunately, this is a simp/e problem

because the system is tridiagonal: just group the terms in
equation appropriately:

u .=-—-Qu —Qu

n,j n—=1,j+1 + (1 + za)u

n,j+1 n+l, j+1,

DAt

2

with n=1,2,...., N—-land a =
Ax

supplemented by Dirichlet or Neumann boundary conditions at
n=0 and n=N. These equations will be discussed in depth shortly.

What about stability?

The amplification factor is: &(k) = !

1+ 4asin’ (k?x)

|£(k)I<1 for any Ar. The scheme is unconditionally stable. The
details of the small-scale evolution form the initial conditions
are obviously inaccurate for large Ar (it is only first-order in
time), but the correct equilibrium solution is obtained for
At = oo,

, which clearly

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

% Matlab Program 6: Heat Diffusion in one dimensional wire within the Fully

% Implicit Method

3. Finite-difference Methods IT: the Heat Equation

Keeping the mesh fixed and changing the conductivity:

clear;
% Parameters to define the heat equation and the range in space and time
L =1.; % Lenth of the wire
T =1.; % Final time
% Parameters needed to solve the equation within the fully implicit method
maxk = 2500; % Number of time steps
dt = T/maxk;
n = 50.; % Number of space steps
dx = L/n;
cond = 1./4.; % Conductivity
b = cond*dt/ (dx*dx) ; % Parameter of the method
% Initial temperature of the wire: a sinus.
for i = 1l:n+1
x (1) =(i-1) *dx;
u(i,1l) =sin(pi*x(i));
end

% Temperature at the boundary (T=0)
for k=l:maxk+l
u(l,k) = 0.;
u(n+l,k) = 0.;
time (k) = (k-1)*dt;
end
(aa(l:nf2):—b; \
bb(l:n-1)=1.+2.*b;
cc(l:n=-2)=-Db;
MM=inv (diag (bb, 0) +diag(aa, -1)+diag(cc, 1)) ;

o

% Implementation of the implicit method
for k=2:maxk % Time Loop
uu=u(2:n,k-1);

u(2:n,k)=MM*uu;

\ J

o

figure (1)

plot(x,u(:,1),'-"',x,u(:,100), "'~

'yx,u(:,300),"-

% Graphical representation of the temperature at different selected times

',x,u(:,600),'-")

title('Temperature within the fully implicit method')

xlabel ("X")
ylabel ('T")
figure (2)

mesh (x,time,u')

title ('Temperature within the fully implicit method")

xlabel ('X")
ylabel ('Temperature')

Finite-difference Numerical Methods

of Partial Differential Equations in Finance with Matlab

Temperature within the fully implicit method

2DAt
Ax?

=0.5

Termperature U] %

o7

06

08

04

03

02

0.1

within the fully implicit method

ik}

Temperature within the fully implicit method

Temperature 00 ¥

2DAt

Temperature within the fully implicit method

o o1 02 03 04 0s 0B 07 08

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

B. Crank-Nicholson Method
(highly recommended !)

Combines the stability of an implicit method with the accuracy
of a method that is second-order in both space and time. Simply
from the average of the explicit and implicit FTCS schemes
(left- and right hand side are centred at time step j+1/2):

un,j+l _un,j _ D((un-!-l,j-kl _2un,j+l +un—l,j+l) + (un+l,j _2un,j +un—l,j)j

A2 AY?

Crank-Nicholson

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

What about stability?

1—2asin? (kij
2
1+ 2asin’ (k?x)

|£(k)I<1 for any At. The scheme is unconditionally stable and
second-order both in time and space. It is worthy to analyse it
more deeply.

The amplification factor is: &(k) = , which clearly

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

The Crank-Nicholson can be written as:

au, , ; + (2- 2a)un,j +au

nil,y = "0, T 2+ za)un,j+l —au

n+l, j+1

These equations only holds for 1<n<N-1. The boundary
conditions again supply the two missing equations. They are
harder to handle than in the explicit method and I will discuss
them.

The Crank-Nicholson method can be written in a matrix form:

Uy, ji
-a 2+20 -« 0) . . .
0 - 2+20 -«
0 . . .))) =
2420 -« 0
—a 2120 —-a) | Uy
Uy i
uo’j
a 2-20 o O : : . U

0 o 2-20 o

22 a O
a 2-20 a) | u,_

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

The two matrices have N-7 rows and N+I columns, which is a
representations of the N-I equations and AN+! unknowns. The
two equations that we are missing come from the boundary
conditions. Using these conditions, I am going to convert this
system of equations into a system of equations involving a square
matrix. The aim is to write a system of equations in the form:

L L iR R
Mj+]uj+] +rj+] _Mjuj+rj

L

For known square matrices M", and M7, and a known vectors

r , Where the details of the boundary conditions have been fully
incorporated.

Example of boundary condition: given u, ., and u, ;. : Sometimes

we know the value of the v function on the boundary (#=0 and
n=N). In this case, we can write:

Uy i
-a 2+20 -o 0 . .) Uy
0 -a 2+2a —-a
0

24200 -« 0

—a 2420 -a) | Uy, g

Uy in

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

as
Uu, . —Qu, .
2420 —a 0 . . b 00'
—a 2+2a . . . ‘
0 - +

_ aal
=M;,u

j+l

3. Finite-difference Methods IT: the Heat Equation

-a 2+20 -«

0 -a 2+2«x

L
+rj+l

and the same for the matrices on the right.

Whichever of the boundary conditions we have, the Crank-
Nicholson scheme, with boundary conditions incorporated is:

L __ R L R
Mj+1uj+1 =r; —r;, +Mjuj

How do we then find u,,,? In principle, the matrix M’, could be

inverted to give:

However,

L -1 R L R
uj+1 = (M_j+1) (l'j _r_j+1 +Mjuj)

matrix inversion is very time consuming and

computationally inefficient. Two much better ways will be
explained below:

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

% Matlab Program 7: Heat Diffusion in one dimensional wire within the

% Crank-Nicholson Method
clear;

oe

Uy jn —QUy

L =1.; % Lenth of the wire
T =1.; % Final time
% Parameters needed to solve the equation within the Crank-Nicholson method
maxk = 2500; % Number of time steps
dt = T/maxk;
n = 50.; % Number of space steps
dx = L/n;
cond = 1/2; % Conductivity
b = cond*dt/ (dx*dx) ; % Parameter of the method
% Initial temperature of the wire: a sinus.
for i = 1l:n+1
x (1) =(i-1) *dx;
u(i,1) =sin(pi*x(i));
end

% Temperature at the boundary (T=0)
for k=1:maxk+1l
u(l, k) = 0.
u(n+l, k) =

0.;
time (k) = (k-

1) *dt;

end

/% Defining the Matrices M_right and M_left in the method\
aal(l:n-2)=-Db;

u(2:n,k)=inv (MM1) *MMr*uu;
end

bbl(l:n-1)=2.+2.%b;
ccl(l:n-2)=-b;
MMl=diag (bbl, 0)+diag(aal,-1)+diag(ccl,1);

aar (l:n-2)=b;

bbr(l:n-1)=2.-2.%b;

ccr(l:n-2)=b;

MMr=diag (bbr, 0)+diag(aar,-1)+diag(ccr,1);

% Implementation of the Crank-Nicholson method

for k=2:maxk % Time Loop
uu=u(2:n,k-1);

figure (1)

plot (x,u(:,1),"'-',x,u(:,100),"'-",x,u(:,300),'-",x,u(:,600),"'-")
title ('Temperature within the Crank-Nicholson method')

xlabel ('X")

ylabel ('T")

figure (2)
mesh (x,time,u'")

title ('Temperature within the Crank-Nicholson method')
xlabel ("X")
ylabel ('Temperature')
Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

Parameters to define the heat equation and the range in space and time

% Graphical representation of the temperature at different selected times

3. Finite-difference Methods IT: the Heat Equation

Keeping the mesh fixed and changing the conductivity:

Temperature within the Crank-Nicholson method

0s

Temperature oo %

2DAt
Ax’

T within the Crank-Nichal method

0.5

o7

06

05

04

03

02

01

o

a

01 02 03 04 05 06 07 08 08 1
X

Temg within the Crank-MNicholzon method

Temperature oo M

Termperature within the Crank-Nicholson method

a 0.1 02 03 04 06 06 07 08 09 1
4

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

a. LU Decomposition (In Matlab: [L,U]=Iu(M))

The matrix M",, is tridiagonal, and it is not hard to decompose

into the product of two other matrices, one having nonzero
elements along the diagonal and the subdiagonal (L) and the
other having non-zero elements along the diagonal and the
superdiagonal (U). So that: M =L U (that is why it is called LU
decomposition).

2420 —-a O

-a 2+2x
0 . . - i =
-a 2+20 -«
0 - 2+2x
1 00 d p 0 .) 0.
L 1.0 d, p,
oL . . O .§o0 0 . . pvy O
v, 10 0 dy, pyo
o0 /Ly, L){. . . 0 0 d,,

Where, without loss of generality, I have chosen the diagonal
elements of L to be one.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

It can be seen that the following relations are verified:
d=2+2a,
ld, _,=p,,=—« and d, =2+2a—1 p, , for2<n<N -1

Notice that we work form n=1 to n=N sequentially.

Now we exploit the decomposition to solve:

Mu=q,LUu=q,Lw=q,Uu=w

And then we are almost done.

e The first step gives: w, =¢, and w, =g, —1,w, , for
2<n< N -1, where we again must work sequentially.

e The second step involves working backwards from n=N-2 to
n=1: uN_,=WN% and un=mfor N-22n21
- d

n

If our matrix equation is time independent the LU decomposition
needs to be done only once.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

Matlab Program 8: Heat Diffusion in one dimensional wire within the
Crank-Nicholson Method
by using the LU decomposition.

o o

o

clear;

% Parameters to define the heat equation and the range in space and time
L =1.; % Lenth of the wire

T=1.; $ Final time

o

Parameters needed to solve the equation within the Crank-Nicholson method
by using the LU decomposition

oe

maxk = 2500; % Number of time steps
dt = T/maxk;
n = 50.; % Number of space steps
dx = L/n;
cond = 1./4.; % Conductivity
b = cond*dt/ (dx*dx) ; % Parameter of the method
% Initial temperature of the wire: a sinus.
for i = 1l:n+1

x (1) =(i-1) *dx;

v(i,1) =sin(pi*x(i));
end

c

% Temperature at the boundary (T=0)
for k=l:maxk+l

v(l,k) =
v (n+l,k)
time (k) = (

0.;
=0.;
k-1) *dt;
end

% Defining the Matrices M_right and M_left in the method
aal(l:n-2)=-b;
bbl(l:n-1)=2.+2.%b;

ccl(l:n-2)=-b;

MMl=diag (bbl,0)+diag(aal,-1)+diag(ccl,1);
[L,U]=1u(MM]) ; % LU decomposition <
aar(l:n-2)=b;

bbr(l:n-1)=2.-2.*b;

ccr(l:n-2)=b;

MMr=diag (bbr, 0) +diag (aar,-1)+diag(ccr,1);

o

% Implementation of the LU decomposition within the Crank-Nicholson method
for k=2:maxk % Time Loop
vv=v(2:n,k-1);
qg=MMr*vv;
w(l)=qq(l);
for j=2:n-1
w(3)=qq(J)-L(J,3-1)*w(3-1);
end
v(n,k)=w(n-1) /U(n-1,n-1);

for i=n-1:-1:2
v(i,k)=(w(i-1)-U(i-1,1i)*v(i+1l,k))/U(i-1,1i-1);
end

o

% Graphical representation of the temperature at different selected times
figure (1)

plot(x,v(:,1),"'-",x,v(:,100),"-",x,v(:,300),"'-",%x,v(:,600),"'-")
title('Temperature within the Crank-Nicholson method (LU)')
xlabel ('X")

ylabel ('T'

figure (2)

mesh (x,time, v")

title('Temperature within the Crank-Nicholson method (LU)')
xlabel ("X")

ylabel ('Temperature')

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

b. SOR (Successive Over-relaxation)

This is an indirect method (has to be solved iteratively) to solve
Mu =q matrix equation and although the resulting solution will
never be exact we can find it to whatever accuracy we want.
Besides, indirect methods can be applied to wider range of
problems, for example, M matrix need not be tridiagonal (T will
describe the ideas more generally).

The system of equations can be written as:

Miu +M,u, +...+ M, u, =q,
Myu +Mpu, +...+ M, u, =q,

Myu, +Mu, +...+ M u, =qy

Where now N is the number of equations (the size of the
matrix), and can be rewritten as:

Myu =g —Mpu, +...+ M, yuy)
Myu, =q, —(Myu, +...+ M, u,)

M yuy =qy =M yu, + M y,u, +...)

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

The system is easily solved iteratively using:

i+ 1 i i
U, : :M[% — (M puy +... +M1N”N)]
11

i+ 1 i i
U, 1 =M[q2 - (M u; +... +M2N”N)]

22

i+ 1 i i
MNI = M[QN — (M yyu; + M ,u, +)]

NN

Where the superscript denotes the level of the iteration, which
is started with some initial guess u’. This iterative method is
called the Jacobi Method.

T can write the matrix M as the sum of a diagonal matrix D, an
upper triangular matrix T (with zeros in the diagonal) and a
lower friangular matrix L (with zeros in the diagonal):
M =D+T+L. I can use this representation fo write the Jacobi
and other methods quite elegantly:

' =D q—(T+Lyu'|

When the Jacobi method is implemented some of the values
u'"'are evaluated before others. In the Gauss-Seidel method we
use the updated values as soon as they are calculated. This
method can be written as:

) 1 n—1) N)

i+l _ _ i+l i

u, = q, =2 M ut =3 M u
M Jj=1 j=n

nn

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

3. Finite-difference Methods IT: the Heat Equation

Generally, iterate methods usually converge to the correct
solution from one side (the correction u!"' —u! stays on the same
side of the sign as /increases). This is used by the SOR method
to speed up the convergence. This method can be written as:

. . n71 . N .
u™ =(1-w)u! +M q, =2 M u' =% Mnju;}
J=1 Jj=n

nn

Acceleration or
Over-relaxation parameter,
which must lie between 1 and 2

u" =T+wD L)' |(1-0)[-eD ' Th' + @D q]

Optimal choice of w:

The error ¢ =u’ —u, where u is the exact solution, satisfies:
e =T+ aD'L)"|((1- @)l - wD'T)f’

The SOR method will converge provided that the largest of the
moduli of the eigenvalues (the spectral radius), of the SOR
matrix is less than 1. There is a theoretical optimum value for
@, that is when the spectral radius is minimum. In practice it is
very simple to iterate on @ to find the optimal value.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

4. The Black-Scholes Equation

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

A very special portfolio
We can write the option value as V(S,t;0,u; E,T;r) =V (S,1).

One simple observation is that a call option will rise in value if
the underlying asset rises (positive correlation) and the opposite
for a put option.

Use II to denote a portfolio of one long option position and a
short position in some quantity, A , of the underlying, S :

M=V(S,1)-AS
The underlying follows a loghormal random walk: dS = uSdt + oSdX

The change on the value of the portfolio from t to dt is:

dIl = dV — AdS

| Not alwavs accurate

and from Ito we have:

2
av = g+ Lorge? Vi + IV s
ot 2 S S
Thus the portfolio changes by:
2
art = g Lorg2? z at + 2V as — ads
ot 2 oS a8

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

Elimination of risk: Delta Hedging

2
art = g Lorg2? Zdz IV 4s — Ads
at 2 0S S

Randomness = Risk

If we chose A= 3? then the randomness is reduced to zero!

Delta hedging is an example of dynamic hedging.

No arbitrage

After choosing the quantity A as suggested above, we hold a
portfolio whose value changes by the amount:

2
dIl =(8V +lo-252 J VJdt

ot 2 95?2

This change is completely riskless, then it must be the same as
the growth we would get if we put the equivalent amount of cash
in a risk-free interest-bearing account:

dIl = rIldt

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

Even if we start with a
discontinuity in the final

Add fogether two
solutions of the
equation and you
will get a third.

data, due fo a discontinuity
in the payoff, this
immediately gets smoothed
out, due to the diffusive
nature of the eauation.

Fisner Black-myron"QCholes equatio

(1973):

Basic diffusion

function of S.

discontinuity in the paygff would be ins\antly
diffused away. The djffusion coefficient a

Represents the advection term moving V in a
preferred direction (like breeze blows the smoke).

4. The Black-Scholes Equation

Just an example (see the differences): Digital Call European
Option with E=10€, T=1 year.

09

08

07

Digital Call Option within the Explicit Method

r=0.4

zilly

08

08

07

Digital Call Option within the Explicit Method

r=0
6=0.25

@05 708
> >
04 04
03 03
01 01
i} ; 0 1
0 2 4 6 g o 12 14 & 16 N 0 2 4 B g8 10 12 14 1B 18 2
3 8
Digital Call Option within the Explicit Method Digital Call Option value, V(S £}, within the Explicit Method
1 T T T T T T T N
gt | r=0.4
2l | 0=0.25 ﬁ
07
/4—7_7
06
@06
>
04
03
Advection
02 +
o Diffusion

This is a reaction term. Balancing this
term and the time derivative would give a
model for decav of a radioactive bodv.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

In the curves red represents the value of the option at expiry,
green half a year before that, and the blue one year before,
that is, when the contract is signed (the price).

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

The Black-Scholes assumptions:

(Even though all of the assumptions can be shown to be wrong to a greater or lesser
extent, the Black-Scholes model is profoundly important both in theory and in
practice)

The underlying follows a lognormal random world.

The risk-free interest rate is a known function of time.
There are no dividends on the underlying.

Delta hedging is done continuously.

There are no transaction costs on the underlying.

There are no arbitrage opportunities.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

Boundary and Initial/Final Conditions

The Black-Scholes equation knows nothing about what kind of
option we are valuing, whether it is a call or a put, nor what is
the strike and the expiry, which are dealt with the final
condition.

To uniquely specify the problem we must prescribe boundary
conditions (how the solution must behave for all time at certain
values of the asset, usually at S =0 and S — o) and initial, =0,
or final conditions, t=T.

The Black-Scholes equation is a backward equation (the signs of
the 7 derivative and the second S derivative in the equation are
the same when written on the same side), therefore, a final
condition (usually the payoff function V(S,T) at expiry) has to
be imposed.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation 4. The Black-Scholes Equation

Payoffs at Expiry
e Binary (or digital) Call : v(S,7)=0(S - E)
e European Call : 7(S,T)=max(S - E.0)

Y v

E S E S

e European Put: 1(S,T) = max(E - $,0) e Binary (or digital) Put : v(s,7) = ©(E - S)

V v

E S E S

Finite-difference Numerical Methods Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation 4. The Black-Scholes Equation

e Straddle : A call and a put with the same strike price.
e Bull Spread : ¥(S,T) = max(S - E,,0) — max(S - E, ,0)

v
v

E S
E1 E2 S

e Strangle: A call and a put with different strike prices.
e Bear Spread : ¥(S,T) = max(E, - S,0) — max(E, — $,0)

v
v

E1 E2 S

E1 E2 S

Finite-difference Numerical Methods Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

e Butterfly : Involves the purchase and sale of options
with three different expiries.

v

E1 E2 Es3 S

e Condor: like a butterfly except that for four strikes.

V —

E1 E2 E3 E4 S

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

Transformation to Constant Coefficient Diffusion
Equation

It can sometimes be useful to transform the basic Black-
Scholes equation intfo something a little bit simpler by a change
of variables. If we write:

V(S,t)=e™"PU(x,71)

where

2
a:_l(zr_l)’ :_zll[zr+1j , S=e" and t=T—£

o’ o’

Then U(x,7) satisfies the basic diffusion equation:

oU _9°U
o 0x’

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

Derivation of Black-Scholes Formulae
(However majority of contracts do not have explicit solutions)

Mrlzﬁaz s =0
Ja 2 dS dS

We will worry about the final conditions (which make the
solution unique) later. For the moment concentrate on
manipulating into something we can easily solve.

1. Change from present value to future value term
V(S,t)=e""U(S,1):

2
aU+162S2812] rSa—U 0
o 2 oS oS

2. As we are solving a backward equation: 7 =T —¢

2
W _1 20U, U

9t 2 0S? as

3. From the asset price fo its return, as building up the
stochastic differential equation (loghormality): & =logS

W_1, azU+()7
ar 2 9&? 2 o

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

. . 1
4. Translation of coordinate system: x=f+(r—50'2)f and

U =W(x,7), like using the forward instead of the spot price.

ow 1 , oW
- = O
ot 2 ox*

The special solution of this equation is:

W(x,7) = ! éw%\\\ ,
> For any X

2nTo - .
(Infinite solutions)
(Green Function)

In the limit 7—0 this solution becomes a delta function
J(x—x") which has de following special property:

0 (vv)
j e 277 g(x")dx"=g(x)

Lim

70 ,/ TO °

Now it is time to consider the payoff: V(S,T) = Payoff(S), and in
our new variables: W (x,0) = Payoff(e”).

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

Then T claim that the solution of this equation for 7> 0 is:

w _(x=x)?

[e 2% Payoff (")dx’

1
N2@To

W(x,t)=

Or retracing our steps:

Tty e (log(S/S)+(r=1/26* (T -1))*

ACR) . a— 20%(T-1) Payoff (5"

«/ZE(T—Z‘)O"([e

ds’
S/

For example,

e a call (european) option value is: V,.(S,t) = SN(d,)—Ee""""N(d,),
where

10g(S/E)+(r+;62)(T—t) log(S/E)+(r—;62)(T—t)

d, = cdy=
o~NT —t oNT —t
1 d 71)(2
and N(d) = —= |e ? dx is the cumulative distribution function
(d)=—— j

for a Normal distribution.

e Put (european) option value is:V,(S,t) = —SN(=d,)+ Ee """ ""N(-d,).

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

The Greeks

Delta: A = 3; . Delta hedging means holding one of the option

and short a quantity A of the underlying., which varies as S
and t varies (dynamic hedging). If A is very big the
approximation collapses.

2

4 . . I
: Since T' is the sensitivity of the A to the

Gamma: I'=—

S
underlying it is a measure of by how often a position must be
rehedged in order to maintain a delta neutral position. The

hedging requirement is decreased by a I'-neutral strategy.

d
Theta: © = aI: : In the Black-Scholes equation contributes to

ensure that a A hedged position earns the risk-free rate.

14 e - :
Vega: Vega:a— : Is the sensitivity to volatility. It is
o

different (it is not even e greek letter) as it is the derivate
with respect a parameter (which is not known accurately) and
not a variable. We can also Vega hedge to reduce sensitivity
to volatility, which might be the major step reduce model risk.

°14
Rho: p:a— : One often uses a whole term structure of
r

interest rates.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation
Extensions of Black-Scholes Equation

I. Options on dividend-paying equities:
Let's assume that the asset receives a constant dividend yield, D. That is
in a time dt each asset receives an amount of DSdt.

4 oV

aV 1
-D)S—-rV=0
+(r) 5S r

—+-0°S?
o 2 0S?

II. Currency Options:
In holding the foreign currency we receive interest at the foreign rate of
interest, .

azl al
+ —_ S— —7rV =0
(r rf) as, r

—+—-0°S
o 2 oS’

III. Commodity Options:

The relevant feature of commodities is that they have a cost of carry.
Let's infroduce q as the fraction of the value of the commodity that goes
to pay the cost of carry. This is just a negative dividend,

av 1 ,.,0W k14
— 40§t S——rV=0
o TR0 gt S

IV. Options on Futures:
The future price, F, of a non-dividend paying equity is related to the spot
price by: F=¢""S. We can easily change variables
V(S,t)=U(F,t) to get:

2
oU 1 .20

— -rU=0
o 2 oF*

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

4. The Black-Scholes Equation

V. Options on time-dependent parameters:
The parameters are known functions of time.

a1 , o, 0V
— +-0()*S
at+za() 0S?

+[r(t)-D@)]S gg —r(t)V =0

VI. Power Options:
An option with a payoff that depends on the asset price at expiry raised
to some power, &. That is, if P = S% we can write:

2
W Lo 2
o 2 oP

+05[10'2((1—1)+r}PaV—rV:0
2 oP

VII. Two-factor Options:

When interest rates are also stochastic, dr =u(r,t)dt +w(r,t)dX , but

not correlated to the asset, the value of the option is determined by:

, 0%V k14
2

v 1, ,0V 1 k14
Y s ol s - =0
o 205 ggr Ty g TS g tlum A G o)

VII. Early Exercise Options:
These options can be exercised early, prior to expiry (American,
Bermudan, ...). The same Black-Scholes equation is verified.

VIII. And a huge many other derivatives ..

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

5. Finite-difference Representations
for the Black-Scholes Equation

The extra complexity of implicit methods is out weighted by
their superior stability properties.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

Rarely we can find closed-form solutions for the values of
options. Unless the problem is very simple indeed we are going to
have to solve a partial differential equation numerically.
Willmott: “I would say that I use finite-difference methods
about 75% of the time, Monte Carlo simulations 20%, and the
rest would be explicit formulae. Those explicit formulae are
almost always just the regular Black-Scholes formulae for calls
and puts. ”

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

As Black-Scholes is to be

Let us introduce some notation; ~ solved in 0< S <o, NAS will
/ be our approximation to oo.

S =nAS,n=0]1,., N

n

t =T - jAt, j=0]1,.,J

J

Vn,j = V(Sn’tj) I have changed the
direction of time, as |
increases time decreases.

BC
(g / Payoff
" (10)
AS I HEEEEEEEEEEEEE
—~ BC R

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

The Black-Scholes equation is:

av 1 , ,0V k14
—+—-0S +rS—-rV=0
or 2 aS? oS

I am going to write this as o emphasize the wide applicability of
the numerical method:

214 N4

av
b(S,t) —+c(S,t)V =0

After taking explicit approximations to the derivatives:

Vn,j+1 - Vn,j
At

ta, ,' Vn+1,j _2Vn,2j + anl,j
9. AS

+bn A Vn+1,j _Vn—l,j
N 2AS

+c, V. . =0(At,AS?)

n,joon,j

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

T am going to rearrange this difference equation to put all of
the j+1 terms on the left-hand side:

%

n,j+1

1
= (Vlan,j - 5 Van,j) Vn—l,j
+ (1-2via, ; + A,)V,

1
+ (Vlan,j + 7V2bn,j) Vn+1,j

O(At*,AtAS?)

Local truncation

error

At At
where v, =——and v, =—.
AS AS

Which can also be written as:

Vi = ;(62112 -rn)AtV,

+ i-e?n? +nadv,
+ ;(O'an +rn)AtV, .,

+O(A>, AtAS?)

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

This equation holds for n=1,...,N ~1 since V., ; and V., . are not

defined. Thus there are N —lequations for N +1 unknowns. The
remaining two equations come from the two boundary conditions
on n=0 and n=N (they are treated separately). I will give some
examples:

Example 1
Suppose we want to price a call option. At S=0 we know that the
value is O, therefore: V, . =0,Vj.

Example 2
For large S the call value goes to S, —Ee "™ . Thus our upper

boundary condition could be: ¥, , = NAS — Ee™™.

Example 3
For a put option we have the condition at S=0 that
V(0,t) = Ee""™, which becomes: ¥, ; = Ee™™.

Example 4
The put option becomes worthless for large S and so ¥, ; = 0.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

Example 5

A useful boundary condition to apply at S=0 for most contracts
(including calls and puts) is that the diffusion and drift terms
switch off. This means that on 5=0 the payoff is guaranteed,
resulting in the condition:

F14
—(0,0)=rV(0,£)=0
5 (00 =7 (0.0)

which numerically becomes: V, . =(1-rAt)V, ..

Example 6

When the option has a payoff that is almost linear in the
underlying for large values of S then you an use the upper
boundary condition

4
ot?

(S,1) >0 as S—>

Almost all common contracts have this property. The finite-

difference representationis: V, . =2V, .=V, , .
This is particularly useful since it is independent of the contract

being valued.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

Error and Stability

What about the error?

I can write the value of option at any # point at the final time

J-l
step Jas: V,, =V, ,+>.(V, ..—V,,). Each of the terms in this
j=0

summation has a local error of O(At*,AtAS?), therefore, the
global error in the final option value is O(JA?*,JAtAS?). If we
value the option at a finite value of T then J=0(At") so that
the error in the final value option is O(At,AS?).

What about the stability?

Trying solutions of the form V, ; =&/ (k)™ (von Neumann), we
get:
E(k)=[1+¢c, At +2a, v (cos kAS —1)|+
ib, v, sin kAS

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

Tt turns out that to have |£(k)|<1, for stability, we require (If
we assume that all the coefficients are slowly varying over the
AS scales):

c,; <0,

2via,; —Atc, ;<1 and

v, b, 1) <2va,,

e In finance the first constraint is almost always satisfied,
very often is -r.

e Typically we chose v, to be O(1) so that the second
constraint is approximately: v, <%a , which implies a

n,j

serious limitation on the size of the time step:

Tlme S‘I’ep AS2 1
constraint At <

= Number of steps
2a,, O’N% ins

e The third constraint can also be a serious restriction:

2a. . 2
At i 9

b,)

This restriction does not make much difference in practice
unless the volatility is very small.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

This last constraint can be avoided if we use a one-sided
difference instead of a central difference for the first
derivative of the option value with respect fo the asset.
Generally, the approximation could depend on the sign of b
(upwind differencing):

. oV V...—-V. .
f b(S,t)>0 th b(St) —=0b>b LRGNy

it b(S,1) en b(S) o5 = b, L

and

. oV V.=V ..
fb(S,t)<0 th b(St) —=0>b g T ntlg

1 (5) cn (,) S nf%.j As ,

This method improves the stability but the numerical method is
less accurate O(AS). To get back the O(AS?®) accuracy of the
central difference with a one-sided difference you can use the
following for:

e Forward difference:

—3V(S,1) +4V (S + AS, 1) — V(S + 2AS, 1)

14 2
—(S5,1) = + O(AS
A (5.0) 2AS ()
e Backward difference:
al(S,t) _ V(S,t)—4V (S —AS,t)+ V(S —2AS,1) +O(AS2)
oS 2AS

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

% Matlab Program 9: Evaluates an European Call option by using an explicit
method

% Parameters of the problem

290000000000 00
P 5555555555 555555%555%5%5%55%5%%
r=0.2; % Interest rate

sigma=0.25; % Volatility of the underlying
M=1600; % Number of time points

N=160; % Number of share price points
Smax=20; % Maximum share price considered
Smin=0; % Minimum share price considered
T=1.; % Maturation (expiry)of contract
E=10; % Exercise price of the underlying
2220000000000 000000000000000000000000000000000000000
S s 5555555555555 55%5%5%55%55%%
dt=(T/M) ; % Time step

ds=(Smax-Smin) /N; % Price step

% Initializing the matrix of the option value
v(1l:N,1:M) = 0.0;

% Initial conditions prescribed by the European Call payoff at expiry:
V(S,T)=max (S-E, 0)
v(1:N,1)=max ((Smin+ (0:N-1)*ds-E),zeros(size(1:N)))";

% Boundary conditions prescribed by the European Call:
v(1l,2:M)=zeros (M-1,1)"; V(0,t)=0
v (N, 2:M)=((N-1) *ds+Smin)-E*exp (-r* (1:M-1) *dt) ; % V(S,t)=S-Eexp[-r(T-t)] as S —>

Lol ot

o

’E>Determin1ng the matrix coeficients of the explicit algorithm
aa=0.5*dt* (sigma*sigma* (1:N-2) .* (1:N-2)-r* (1:N-2))"';

bb=1-dt* (sigma*sigma* (1:N-2) .* (1:N-2)+r)"';

cc=0.5*dt* (sigma*sigma* (1:N-2) .* (1:N-2)+r* (1:N-2))"';

% Implementing the explicit algorithm

for i=2:M,

v(2:N-1,1)=bb.*v(2:N-1,i-1)+cc.*v(3:N,i-1)+aa.*v(1l:N-2,1i-1);
nd

% Reversal of the time components in the matrix as the solution of the Black-
Scholes

% equation was performed backwards

v=fliplr(v);

% Figure of the value of the option, V(S,t), as a function of S

$ at three different times:t=0, T/2 and T (expiry).

figure (1)

plot (Smin+ds* (0:N-1),v(1:N,1)"', 'r—',Smin+ds* (0:N-1),v (1:N, round(M/2))"', "g-
', Smin+ds* (0:N-1),v(1:N,M) ", 'b-");

xlabel ('S");

ylabel ('V(S,t)");

title ('European Call Option within the Explicit Method');

% Figure of the Value of the option, V(S,t)

figure (2)

mesh (Smin+ds* (0:N-1),dt*(0:M-1),v(1l:N,1:M)")

title ('European Call Option value, V(S,t), within the Explicit Method')
xlabel ('S")

ylabel('t")

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

European Call Option with E=10€, T=1 year, r=0.2, and 5=0.25.

European Call Option within the Explicit Metho

Eurapean Call Option value, V(5 1), within the Explicit Method

In the curves blue represents the value of the option at expiry,
green half a year before that, and red one year before, that is,
when the contract is signed (the price).

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

Implicit Methods

The extra complexity of implicit methods is out weighted by
their superior stability properties.

A. Fully Implicit Method

V 14

n,j+1 - n,j

V

n+l]+1 n ,j+1

+ Vn—l,j+1 J
ASZ

Vn+l]+1 n 1,j+1
n J+1
v

= O(At, AS?)

n ,j+1

n L+ n, i+l

Actually, it does not matter much whether the coefficients a, b
and c are evaluated at time step jor j+I.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

Which can be written as:

1
Vn,j - (_Vlan,jﬂ - 5 l/2bn,j+1) Vn—l,j+1

+ (1+2va, ,,, — Atk

n]+1) n,j+l1

1
+(Vl n,j+l1 + VZ n]+1) n+l,j+1

O(A%, AtAS?)

Local truncation

At error

At
where v, =57 and v, =

Again, this equation holds for n=1,..,N -1 since V., , and V', ;

are not defined. Thus there are N -1 equations for N +1
unknowns. The remaining two equations come from the two
boundary conditions at n=0 and n=N (they are treated
separately). However, as we already know, there is a huge
difference between this scheme and the explicit finite-
difference scheme: stability (it is highly improved) and the
solution procedure (it is no longer so straightforward).

This method can be significantly improved upon with little extra
computation effort of the following scheme.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation 5. Finite-difference Representations for the Black-Scholes Equation
B. The Crank-Nicholson Method , ,
The Crank-Nicholson can be written as:
An be considered as an average of the explicit and fully implicit _
. . 9 p Y p An,j+1Vn—1,j+l +(1+Bn,j+])Vn,j+] +Cn,j+an+l,j+l -
methods (/1 uses 6 points!):
- An,jVn—l,j + (1 - Bn,j)Vn,j - Cn,jVn+l,j
Vn,_j+1 - Vn,j
4 a, in Vn+l,j+1 _2Vn,j+l + Vn—l,j+l
2 1 1
2 AS An,j = Evlan’j + ZVan,j ,
+ an,j Vn+l,j _2Vn,j +Vn—17j 1
2 AS? B,;=—va,; + Ak,
_ 1
n bn,j+1 Vn+1,j+1 Vn—l,j+1 C, ;= Evlan i *Vzbn,j
2 2AS
+ bn,j Vn+1,j - Vn—l,j
2 IAS These equations only holds for 1<n<N-1 and the boundary
conditions again supply the two missing equations.
1 1) 5
+-Cin V,w.+1 + —cn’jVM. =0(At",AS ")
2 2
The Crank-Nicholson method can be written in a matrix form:
Finite-difference Numerical Methods Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

~

0,j+1
Al,j+l 1+Bl,j+l Cl,j+1 0 : : : I/I,j+1
0 Az,j+1 1+Bz,‘/+1 C2,j+1
0 =
1+BN—2, Jj+l CN—z, Jj+l 0
AN—I,j+I 1+BN—1,j+1 CN—l,j+l VN—l,j+l
VN,/+1
Vo,
-4, 1-B, —-C; 0 g
0 -4, 1I-B,, -G,
0
I_BN—Z,j _CNfz,j 0
_AN—l, J l_BNfl,j _CN—I, J VN—l, J
V.

The two matrices have N-I rows and N+I columns, which is a
representations of the N-I equations and A+! unknowns. The
two equations that we are missing come from the boundary
conditions. Using these conditions, I am going fo convert this
system of equations into a system of equations involving a square
matrix. The aim is to write a system of equations in the form:

M: V. +rt

J+L T g+l Jj+l

 ar R R
=MjV, +r;

For known square matrices M/, and M7, and known vectorsT ,

and where the details of the boundary conditions have been fully
incorporated.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

Example 1 of boundary condition: given V., and V, . ;:

Sometimes we know that the option has a particular value on the
boundary, n=0 and n=N, For example, if we have an European put
we know that V(0,£)=0 and V(S .t)=S . —Ee'"". This

max

translates to knowing that 1,

Jj+l
Al,j+1 1+Bl,j+1 Q,j+1 0
O A2,j+1 1 + Bz,j+1 C2,j+1
0 .
1 + BN—2,j+1 CN—Z,jJrl O
AN—l, J+ 1+ BN—I, J+l CN—I, J+
as
V.
Lj+
1+B,, C,. 0 . : :
Az,_/+1 1 + BZ,_/-H . .
0 : - 0 : S|+
1+ BN—Z, J+l CN—z, i+l
0 AN—I,_/+1 1 + BN—I,;‘+1 V
N—1, j+1
— nal L
- Mj+l\]j+l +rj+1

and similarly for matrices on the right.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

=0 and V, ;,, = NAS — Ee”"™)%:

v,

0,/+1

Von

N-Lj+1

N, j+

A4

1,j+1VE),j+l

0

CN—],jHVN,jH

5. Finite-difference Representations for the Black-Scholes Equation

2
Example 2 of boundary condition: given 3SV =0: This condition

—=
is particularly useful since it is independent of the type of the
contract, as long as the contract has a payoff that is almost
linear in the underlying. This condition is, in central difference
form:

e

0,j+1 — 2V _Vz,j+1 and VN,j+1 = 2VN—1,j+l - VN—Z,j+1

1,j+1

Thus, we can write the left hand side as:

1+qj+1 +21,j+l C]:j+] _4,j+1 0 . . . 1+
Aju +B .,

0 0 .
1"‘6\7_2, i q\f—z, il
- 0 Ay G B t2G0 V
N

and similarly for the right hand side.

The Crank-Nicholson scheme can be written again as:

L __ R L R
M, V,,=r, -r,,+M)V

J J+l1 J o

where this time vectors r = 0.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

a. Matriz Inversion:

V=M) =r/, +M7V)

Jj+l1

However, matrix inversion is very time consuming and
computationally very inefficient.

b. LU Decomposition

The matrix M’ is tridiagonal, and it is not hard to decompose

into the product of two other matrices, one having nonzero
elements along the diagonal and the subdiagonal (L) and the
other having non-zero elements along the diagonal and the
superdiagonal (U). So that, M=L U:

1+B, C 0
4, 1+B, C,.
0 . . . Cy, : =
AN—Z 1+BN—2 C'N—2
0 A4, 1+B,,
1 00 d u 0 . . 0.
L, 10 0 d, u,
oL . . 0 .40 0 . . u, O
Iy, 1 0| . . . 0 dy, u.,
0 L, I)\. . . 0 0 d,

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

The following relations are verified:
d =1+5B,
ld, =4, u,_ =C,_ andd, =1+B —lLu, for2<n<N-1I

Notice that we work form n=1 fo n=N sequentially.

Now we exploit the decomposition to solve:

MV=q,LUV=q,Lw=q,UV=w

Two steps more and we are done:

e The first step gives: w, =¢, and w, =¢q, —1,w, , for
2<n< N -1, where we again must work sequentially.

e The second step involves working backwards from n=N-2 to
n=l: ¥, =" cmdVnzw”_cjlp"V’”1 for N-2>n21

n

dN—l

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

c. SOR (Successive Over-relaxation)
1. Jacobi method:

The system is easily solved iteratively using:

i+1 i i
Vi :7[611_(M12N2+-~+M1NVN)]
M,
i+ 1 i i
V, :M[Q2_(M21V1 +‘“+M2NVN)]

22

i+ 1 i i
VN1 ZM[QN (M V' +M,V, +)]

NN

Where the superscript denotes the level of the iteration, which
is started with some initial guess V°.

I can write the matrix M (tridiagonal) as the sum of a diagonal
matrix D, an upper friangular matrix T (with zeros in the
diagonal) and a lower triangular matrix L (with zeros in the
diagonal): M=D+T+L. Then:

Vit =D q-(T+L)WV']

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

5. Finite-difference Representations for the Black-Scholes Equation

2. Gauss-Seidel method: we use the updated values as soon as
they are calculated:

A 1 n-l ‘ N .

i+l _ 4 [i+1 i

Y S {q” _21 Vi MY
j= j=n

nn

3. Successive over-relaxed (SOR) method: iterate methods
usually converge to the correct solution from one side (the
correction V"' —V' stays on the same side of the sign as /

increases). This is used by the SOR method to speed up the
convergence. This method can be written as:

n—1 N
i+l _ i i+1 i
l/n - (1 _-‘Z))L/n + {‘Zn - :E:]v1>nfl/j _-:E: jLI’an/j

j=1 j=n

Acceleration or
Over-relaxation parameter,
which must lie between 1 and 2
(We should find the optimum
value for w)

Vi = (T+wD L) |[(1-@)T-aD ' T)V' + &b 'q]

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

6. Other Finite-difference Methods
for the Black-Scholes Equation

Improving and extending explicit and implicit methods

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

The questions that arise with any new method are:
e What is the error in the method in terms of At and AS?

e What are the restrictions (stability) on the time step
and/or asset step?

e Can I solve the resulting finite-difference equations
quickly?

e Is the method flexible enough to cope with changes in
coefficients, boundary conditions, etc..? That is, do you
have to start from scratch if the contract changes slightly,
or you can simply change a subroutine to cope with a new
contract? Important example: American options.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

Douglas Schemes

This is a method that manages to have a local truncation error
of O(AS*,At*) for the same computational effort as the Crank-
Nicholson scheme.

It may be expected that to get a higher order of accuracy than
Crank-Nicholson would require the use of more points in the S
direction: this is not always so !

For simplicity and clarity, I will describe the method using the
basic-diffusion like equation (the extension to Black-Scholes
becomes trivial):

a9V
Jdt 9S?

The explicit method applied to this equation is just:

I/n,j+1 - I/n,j — Vn+1,j - 2Vn,j + I/n—l,j
At AS’®
and the fully implicit method is:
Vn,j+1 - Vn,j _ Vn+1,j+1 - 2I/n,j+1 + Vn—l,j+1
At AS?

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

and, as we already know, the Crank-Nicholson method is just an
average of the two methods. Is there any advantage of taking a
weighted average (6 method)?

Vn, J+l _Vn, Jj (1_ 9) Vn+1, Jj _2I/n7 Jj +V;,—1, Jj iy Vn+1, J+l _2Vn, J+l +Vn—1, J+l
N AS? AS?

When 0:; we are back to the Crank-Nicholson method. For a

general value of @ the local fruncation error is:

0) lAt—LAS2 — 6At,AS*, AL
2 12

1 .
For 6 = 0,5 or 1 we get the results we have seen so far, but if

1 AS® o
6=—- the local truncation is improved.
2 12A¢

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

Three Time-level Methods

Numerical schemes are not restricted to the use of just fwo
time levels if it gave us a better local truncation error or had
better convergence properties. For simplicity, I shall still
concentrate on the basic diffusion equation.

The obvious first method fo try uses a central difference for
the time derivative in an explicit scheme (Leap Frog):

Vn,j+1 - - 2I/vn,j + Vn—l,j

2At B AS?>

%

n,j-1 __

%

n+l,j

However, this is unstable for any time step! However, an explicit
scheme that is stable for all time steps is (Du-Fort Frankel):

Vn,j+l - I/n,j—l — Vn+l,j - Vn,j+l - I/n,j—l + Vn—l,j
2At AS’
leading to:
(1+2v,)VM.+1 =2v, (VM]. + Vn_u) +(1- 21/1)Vn’_/._1

which, to get started, requires an initial condition and data at

2
the first time level. The local error is O{Atz,ASz,(AA;) } and,

therefore, we should be aware (!!) of the relation between time
and price steps.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

Richardson Extrapolation

In the Explicit method the error is O(AS?,At). If we assume
that the approach to the correct solution as the time step and
asset step tend to zero is in a sense “regular” (there is no
guarantee that it is always the case, take care!) then we could
postulate that (Taylor series):

approx. sol.=exact. sol.+& At +&,AS” +£,At” +--

Suppose that we have two approximate solutions (V;,7,) using
different grid sizes with the same method:

V1 =exact. sol.+ & At +€2AS12 +83At12 Foee=

At

= exact. sol.+AS2 & —1+8 +oeee

1 ASlz 2

and

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

V2 =exact sol. + £ At, + EZASzz + €3At22 R

5 At2
=exact.sol.+AS"| e, ——+¢€_ |+
Tas2 2
2
Then, if we choose:
At At
AS} AS;

we can find a better (more accurate) solution than both (V,V,)

by eliminating the leading-order error terms. This better
approximation is given by:

” _ASJV, —ASTY,
MY AS2 —AS?

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

Free Boundary Problems: American
Options

The value of American options must always be greater than the
payoff, otherwise there will be an arbitrage opportunity:

V(S,t) = Payoff (S)

The payoff function may also be time dependent. For example, if
the option is Bermudan, i.e. exercise is only allowed on certain
dates, then the payoff function is cero except on the special
dates, when it is some prescribed function on the underlying. So
I am going to write Payoff(S,t) and I need never mention
Bermudan options again.

American options are examples of free boundary problems. We
must solve a partial differential equation with an unknown
boundary, the position of which is determined by having one
more boundary condition than if the boundary were prescribed.

Early Exercise and the Explicit Method

Suppose that we have found V, . for all # at the timestep j,

proceed to find the option value at time j+1 by using the finite-
difference scheme:

e

n,j+l1

=A,, V., + (1+ B,)Vn’_/. +C,.V

n+l,j

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

Do not worry about whether or not you have violated the
American option constraint until you have found the option
values V, .., for all n. Now let's check whether the new option

n,j+1
values are greater or less than the payoff. If they are less than
the payoff then we have arbitrage. We cannot allow that to
happen so at every value of n for which the option value has
allowed arbitrage, replace the value by the payoff at that asset
value. That's all.

Early Exercise and Crank-Nicholson

Implementing the American constraint in the Crank-Nicholson is
a bit harder but the rewards come in the accuracy. The only
complication arises because the Crank-Nicholson is implicit, and
every value of the option at j+/ timestep is linked to every other
value at that timestep. We can have two practical possibilities:

1. Like in the explicit method, replace the option value with
the payoff (in case it is necessary) after the values at
timestep j+1 have all been calculated. In this case, the
accuracy of this method is then reduced to O(At).

2. Replace the option values at the same time as they are
found. For example in the SOR method:

nn J=n

i+ i w <« i+ - i
Vn 1 :max((l—a))Vn +M{qn_Z;M”jVJ I_ZMnjVj }PayOffJ
j=

The payoff is evaluated at n and j+1 in the obvious manner,
this is called projected SOR.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

% Matlab Program 10: Compares European and American Call options by using an
% explicit method Parameters of the problem:

.25 % Interest rate

a=0.25; % Volatility of the underlying

.35 % Continuous dividend yield
M=1600; % Number of time points

N=160; % Number of share price points
Smax=20; % Maximum share price considered
Smin=0; % Minimum share price considered
T=1.; % Maturation (expiry)of contract

% Exercise price of the underlying

dt=(T/M) ; % Time step
ds=(Smax-Smin) /N; % Price step
% Initializing the matrix of the option values: v is the European and vam is the
American option

v(l:N,1:M) = 0.0;

vam(1l:N,1:M) = 0.0;

% Initial conditions prescribed by the Call payoff at expiry: V(S,T)=max (E-S,0)
v(1:N,1)=max ((Smin+ (0:N-1)*ds-E),zeros(size(1l:N)))"';
vam(1:N,1)=max ((Smin+ (0:N-1) *ds-E) , zeros (size(1:N)))"';

% Boundary conditions prescribed by Call Options with dividends:
% V(0,t)=0
v(l,2:M)=zeros(M-1,1)";
vam(l,2:M)=zeros (M-1,1)";
% V(S,t)=Se” (-d*(T-t))-Ee”(-r(T-t)) as S -> infininty.
v (N,2:M)=((N-1) *ds+Smin) *exp (-d* (1:M-1) *dt) -E*exp (-r* (1:M-1) *dt) ;
vam (N, 2:M) = ((N-1) *ds+Smin) *exp (-d* (1:M-1) *dt) -E*exp (-r* (1:M-1) *dt) ;

% Determining the matrix coeficients of the explicit algorithm
aa=0.5*dt* (sigma*sigma* (1:N-2) .* (1:N-2) - (r-d) * (1:N-2))';
bb=1-dt* (sigma*sigma* (1:N-2).* (1:N-2)+r)"';

cc=0.5*dt* (sigma*sigma* (1:N-2) .* (1:N-2)+ (r-d) * (1:N-2)) ';

% Implementing the explicit algorithm
for i=2:M,
v(2:N-1,1i)=bb.*v(2:N-1,i-1)+cc.*v(3:N,i-1)+aa.*v(1:N-2,i-1);
% Checks if early exercise is better for the American Option
vam(2:N-1,1)=max (bb.*vam(2:N-1,1i-1)+cc.*vam(3:N,i-1)+aa.*vam(l:N-2,1i-
1),vam(2:N-1,1));
end

% Reversal of the time components in the matrix as the solution of the Black-
Scholes

% equation was performed backwards
v=fliplr(v);

vam=fliplr (vam) ;

% Compares the value today of the European (blue) and American (red) Calls,
V(S,t), as a function of S.

% The green curve represents the payoff at expiry.

plot (Smin+ds* (0: (N-2)),v(l: (N-1),M) "', 'g-",Smin+ds* (0: (N-2)),v(l: (N-1),1)"', "b-
', Smin+ds* (0: (N-2)),vam(l: (N-1),1)"', "'r=");

xlabel ('S'");

ylabel ('V(S,t)");

title('European (blue) and American (red) Call Options');

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

6. Other Finite-difference Methods for the Black-Scholes Equation

European and American Call Options with E=10€, T=1 year, r=0.2,
6=0.25 and d=0.3 (dividend yield).

European (blue) and American (red) Call Cptions
10 r T r r

(5.1

In the figure it is represented the value today (when the
contract is signed, that is, one year before expiry) of an
American (red) and European (blue) options. The green line
represents the payoff at expiry.

Finite-difference Numerical Methods
of Partial Differential Equations in Finance with Matlab

